666 research outputs found

    Exact solutions in a scalar-tensor model of dark energy

    Full text link
    We consider a model of scalar field with non minimal kinetic and Gauss Bonnet couplings as a source of dark energy. Based on asymptotic limits of the generalized Friedmann equation, we impose restrictions on the kinetic an Gauss-Bonnet couplings. This restrictions considerable simplify the equations, allowing for exact solutions unifying early time matter dominance with transitions to late time quintessence and phantom phases. The stability of the solutions in absence of matter has been studied.Comment: 30 pages, 2 figures, to appear in JCA

    Slow-roll Inflation with the Gauss-Bonnet and Chern-Simons Corrections

    Full text link
    We study slow-roll inflation with the Gauss-Bonnet and Chern-Simons corrections. We obtain general formulas for the observables: spectral indices, tensor-to-scalar ratio and circular polarization of gravitational waves. The Gauss-Bonnet term violates the consistency relation r = -8n_T. Particularly, blue spectrum n_T > 0 and scale invariant spectrum |8n_T|/r << 1 of tensor modes are possible. These cases require the Gauss-Bonnet coupling function of \xi _{,\phi } \sim 10^8/M_{Pl}. We use examples to show new-inflation-type potential with 10M_{Pl} symmetry breaking scale and potential with flat region in \phi \gtrsim 10M_{Pl} lead to observationally consistent blue and scale invariant spectra, respectively. Hence, these interesting cases can actually be realized. The Chern-Simons term produce circularly polarized tensor modes. We show an observation of these signals supports existence of the Chern-Simons coupling function of \omega _{,\phi } \sim 10^8/M_{Pl}. Thus, with future observations, we can fix or constrain the value of these coupling functions, at the CMB scale.Comment: 21 pages, 5 figure

    Lo-Fi Matchmaking: A Study of Social Pairing for Backpackers

    Get PDF
    There is a new world emerging around mobile social networks and the technologies used to facilitate and mediate them. It is technically feasible for mobile social software such as pairing or matchmaking systems to introduce people to others and assist information exchange. However, little is known about the social structure of many mobile communities or why they would want pairing systems. When these systems are built, it is not clear what the social response by those communities will be or what the systems will be like to use in practice. While engaged in other work determining requirements for a mobile travel assistant we saw a potentially useful application for a pairing system to facilitate the exchange of travel information between backpackers. To explore this area, we designed two studies involving usage of a low-fidelity role prototype of a social pairing system for backpackers. Graphs of the resulting social pairings showed backpackers who were hubs in the network of travel information. It also demonstrated the effect of travel direction on information utility. Backpackers rated the utility of different pairing types, and provided feedback on the social implications of being paired based on travel histories. Practical usage of the social network pairing activity and the implications of broader societal usage are discussed

    Measuring Black Hole Spin in OJ287

    Full text link
    We model the binary black hole system OJ287 as a spinning primary and a non-spinning secondary. It is assumed that the primary has an accretion disk which is impacted by the secondary at specific times. These times are identified as major outbursts in the light curve of OJ287. This identification allows an exact solution of the orbit, with very tight error limits. Nine outbursts from both the historical photographic records as well as from recent photometric measurements have been used as fixed points of the solution: 1913, 1947, 1957, 1973, 1983, 1984, 1995, 2005 and 2007 outbursts. This allows the determination of eight parameters of the orbit. Most interesting of these are the primary mass of 1.841010M1.84\cdot 10^{10} M_\odot, the secondary mass 1.46108M1.46\cdot 10^{8} M_\odot, major axis precession rate 39.139^\circ.1 per period, and the eccentricity of the orbit 0.70. The dimensionless spin parameter is 0.28±0.010.28\:\pm\:0.01 (1 sigma). The last parameter will be more tightly constrained in 2015 when the next outburst is due. The outburst should begin on 15 December 2015 if the spin value is in the middle of this range, on 3 January 2016 if the spin is 0.25, and on 26 November 2015 if the spin is 0.31. We have also tested the possibility that the quadrupole term in the Post Newtonian equations of motion does not exactly follow Einstein's theory: a parameter qq is introduced as one of the 8 parameters. Its value is within 30% (1 sigma) of the Einstein's value q=1q = 1. This supports the nohairtheoremno-hair theorem of black holes within the achievable precision. We have also measured the loss of orbital energy due to gravitational waves. The loss rate is found to agree with Einstein's value with the accuracy of 2% (1 sigma).Comment: 12 pages, 4 figures, IAU26

    Innovative solutions to novel drug development in mental health

    Get PDF
    There are many new advances in neuroscience and mental health which should lead to a greater understanding of the neurobiological dysfunction in neuropsychiatric disorders and new developments for early, effective treatments. To do this, a biomarker approach combining genetic, neuroimaging, cognitive and other biological measures is needed. The aim of this article is to highlight novel approaches for pharmacological and non-pharmacological treatment development. This article suggests approaches that can be taken in the future including novel mechanisms with preliminary clinical validation to provide a toolbox for mechanistic studies and also examples of translation and back-translation. The review also emphasizes the need for clinician-scientists to be trained in a novel way in order to equip them with the conceptual and experimental techniques required, and emphasizes the need for private-public partnership and pre-competitive knowledge exchange. This should lead the way for important new holistic treatment developments to improve cognition, functional outcome and well-being of people with neuropsychiatric disorders

    Fitting the integrated Spectral Energy Distributions of Galaxies

    Full text link
    Fitting the spectral energy distributions (SEDs) of galaxies is an almost universally used technique that has matured significantly in the last decade. Model predictions and fitting procedures have improved significantly over this time, attempting to keep up with the vastly increased volume and quality of available data. We review here the field of SED fitting, describing the modelling of ultraviolet to infrared galaxy SEDs, the creation of multiwavelength data sets, and the methods used to fit model SEDs to observed galaxy data sets. We touch upon the achievements and challenges in the major ingredients of SED fitting, with a special emphasis on describing the interplay between the quality of the available data, the quality of the available models, and the best fitting technique to use in order to obtain a realistic measurement as well as realistic uncertainties. We conclude that SED fitting can be used effectively to derive a range of physical properties of galaxies, such as redshift, stellar masses, star formation rates, dust masses, and metallicities, with care taken not to over-interpret the available data. Yet there still exist many issues such as estimating the age of the oldest stars in a galaxy, finer details ofdust properties and dust-star geometry, and the influences of poorly understood, luminous stellar types and phases. The challenge for the coming years will be to improve both the models and the observational data sets to resolve these uncertainties. The present review will be made available on an interactive, moderated web page (sedfitting.org), where the community can access and change the text. The intention is to expand the text and keep it up to date over the coming years.Comment: 54 pages, 26 figures, Accepted for publication in Astrophysics & Space Scienc

    An Integrated TCGA Pan-Cancer Clinical Data Resource to Drive High-Quality Survival Outcome Analytics

    Get PDF
    For a decade, The Cancer Genome Atlas (TCGA) program collected clinicopathologic annotation data along with multi-platform molecular profiles of more than 11,000 human tumors across 33 different cancer types. TCGA clinical data contain key features representing the democratized nature of the data collection process. To ensure proper use of this large clinical dataset associated with genomic features, we developed a standardized dataset named the TCGA Pan-Cancer Clinical Data Resource (TCGA-CDR), which includes four major clinical outcome endpoints. In addition to detailing major challenges and statistical limitations encountered during the effort of integrating the acquired clinical data, we present a summary that includes endpoint usage recommendations for each cancer type. These TCGA-CDR findings appear to be consistent with cancer genomics studies independent of the TCGA effort and provide opportunities for investigating cancer biology using clinical correlates at an unprecedented scale. Analysis of clinicopathologic annotations for over 11,000 cancer patients in the TCGA program leads to the generation of TCGA Clinical Data Resource, which provides recommendations of clinical outcome endpoint usage for 33 cancer types

    Search for displaced vertices arising from decays of new heavy particles in 7 TeV pp collisions at ATLAS

    Get PDF
    We present the results of a search for new, heavy particles that decay at a significant distance from their production point into a final state containing charged hadrons in association with a high-momentum muon. The search is conducted in a pp-collision data sample with a center-of-mass energy of 7 TeV and an integrated luminosity of 33 pb^-1 collected in 2010 by the ATLAS detector operating at the Large Hadron Collider. Production of such particles is expected in various scenarios of physics beyond the standard model. We observe no signal and place limits on the production cross-section of supersymmetric particles in an R-parity-violating scenario as a function of the neutralino lifetime. Limits are presented for different squark and neutralino masses, enabling extension of the limits to a variety of other models.Comment: 8 pages plus author list (20 pages total), 8 figures, 1 table, final version to appear in Physics Letters

    Search for direct production of charginos and neutralinos in events with three leptons and missing transverse momentum in √s = 7 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for the direct production of charginos and neutralinos in final states with three electrons or muons and missing transverse momentum is presented. The analysis is based on 4.7 fb−1 of proton–proton collision data delivered by the Large Hadron Collider and recorded with the ATLAS detector. Observations are consistent with Standard Model expectations in three signal regions that are either depleted or enriched in Z-boson decays. Upper limits at 95% confidence level are set in R-parity conserving phenomenological minimal supersymmetric models and in simplified models, significantly extending previous results
    corecore